Distributed Robust Optimization (DRO) Part I: Framework and Example
نویسندگان
چکیده
Robustness of optimization models for network problems in communication networks has been an under-explored topic. Most existing algorithms for solving robust optimization problems are centralized, thus not suitable for networking problems that demand distributed solutions. This paper represents a first step towards a systematic theory for designing distributed and robust optimization models and algorithms. We first discuss several models for describing parameter uncertainty sets that can lead to decomposable problem structures and thus distributed solutions. These models include ellipsoid, polyhedron, and D-norm uncertainty sets. We then apply these models in solving a robust rate control problem in wireline networks. Three-way tradeoffs among performance, robustness, and distributiveness are illustrated both analytically and through simulations. In Part II of this two-part paper, we will present applications to wireless power control using the framework of distributed robust optimization.
منابع مشابه
Distributed Robust Optimization (DRO) Part II: Wireless Power Control
Optimization formulations and distributed algorithms have long been used for resource allocation problems in wireless networks including power control. However, the often assumed constant parameters in these formulations are in fact time-varying, unknown, or based on inaccurate estimates in real systems. Taking into account these factors, is it still possible to keep the algorithms distributed ...
متن کاملNear-Optimal Bayesian Ambiguity Sets for 3 Distributionally Robust Optimization 4
We propose a Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO) when the underlying distribution is defined by a finite-dimensional parameter. The key idea is to measure the relative size between a candidate ambiguity set and a specific asymptotically optimal set. As the amount of data grows large, this asymptotica...
متن کاملNear-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization
We propose a Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO) when the underlying distribution is defined by a finite-dimensional parameter. The key idea is to measure the relative size between a candidate ambiguity set and a specific, asymptotically optimal set. This asymptotically optimal set is provably the sm...
متن کاملRobust Portfolio Optimization with risk measure CVAR under MGH distribution in DEA models
Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness. Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH) distribution for portfolio modeling and performance evaluation, using conditional value at risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover, a robust portfolio optimizati...
متن کاملNear-Optimal Ambiguity Sets for Distributionally Robust Optimization
We propose a novel, Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO). The key idea is to measure the relative size between a candidate ambiguity set and an asymptotically optimal set as the amount of data grows large. This asymptotically optimal set is provably the smallest convex ambiguity set that satisfies a s...
متن کامل